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Ideas from the theory of defects in crystalline matter are combined with results 
from the direct gauge theory for the Poincar6 group to obtain exact solutions of 
the Einstein field equations. Many of the solutions are sufficiently simple that 
the equations for geodesic motion can be solved in closed form. Some of these 
solutions exhibit unexpected behaviors and properties, such as geodesic motions 
with hyperlight speed and local time reversals relative to observers in the 
asymptotic Minkowski space-time at large distances from the defect core 
regions. However, these same geodesic motions are regular in the frames of 
reference attached to observers that move along the geodesics, and hence no 
established physical laws are broken by such solutions. 

1. I N T R O D U C T I O N  

One of the original reasons for constructing a gauge theory for the 
Poincar6 group was the belief that the four-parameter translation subgroup 
would lead to a description of gravity that agreed with the Einstein 
formulation and was compatible with the other fundamental gauge theo- 
ries. Although it is now known that gravitational effects arise from the 
compensating 1-forms for local action of Lorentz boosts, local action of the 
translation subgroup is still essential. This is because the Einstein field 
equations are obtained, either directly or as approximations, from the field 
equations that are the Euler-Lagrange equations that result from variation 
of an appropriate Lagrangian function with respect to the components of 
the compensating fields for the local action of the translation group. The 
question thus naturally arises as to what specific effects or physical proper- 

~Professor Emeritus, Department of Mathematics, Lehigh University, Bethlehem, Pennsylva- 
nia 18015. Present address: 3503 Avenue P, Galveston, Texas 77550. 

1315 

0020.7748/94/0600-1315507.00/0 �9 1994 Plenum Publishing Corporation 



1316 Edelen 

ties are associated with the presence of compensating fields for the local 
action of the translation group. A partial answer to this question is 
obtained by use of corresponding ideas and methods of analysis developed 
in the classical theory of defects (dislocations and disclinations) in crys- 
talline matter. The results are exact descriptions of regions of space-time 
where the Einstein field equations are satisfied and where unusual patterns 
of geodesic motion are obtained. 

2. THE UNDERLYING GAUGE GEOMETRY 

The results collected together in this section have been established 
elsewhere (Edelen, 1986, 1989, and the references therein). The reader is 
referred to these papers for proofs of the assertions made below. 

Let M4 be the standard Minkowski space-time with global coordinates 
{x, y, z, t}. and let L4 be the space-time that is generated from the local 
action of the Poincar6 group on M4. The space-time L4 is a four-dimen- 
sional, Riemann-Cartan manifold, in general, with both curvature and 
torsion, that shares the coordinate functions {x, y, z, t} with the underlying 
M4. The structure of the manifold L 4 is as follows. 

Local action of the four-parameter translation group T(4) gives rise to 
the four compensating l-forms 

4~'= ~ ( x  k) dx  j, 1 < i -< 4 (1) 

while local action of the six-parameter, proper, orthochronous Lorentz 
group L(6) gives rise to the six compensating 1-forms 

W ~ = W ~ ( x  k) dx  i, 1 < ~ < 6 (2) 

The semidirect product structure of the ten-parameter Poincar6 group 
P(10) as a subgroup of GL(5,  ~)  yields the minimal replacement d x i ~  B i, 
with 

8i= dxJ = + W;t  x* + 40 dxJ ( 3 )  

Here, l~,, 1 -< ~ < 6, 1 < i, j - 4, are the components of a matrix basis for 
the matrix Lie algebra of the Lorentz group. The action of this minimal 
replacement is what lifts M4 up to L4. 

The distortion 1-forms {Bill  < i < 4} constitute a basis for the vector 
space A ~ of forms on L4 provided 

B 1 A V = A B 3 A B 4 = B #  :/: 0 ( 4 )  

where 

B = det(Bj), # = dx ~ ̂  dx  2 ^ dx  3 ^ dx  4 (5) 
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The dual basis {bill < i -< 4} is defined by 

bi _] B j = 6~i, bi = b~ (xk)t~j (6) 

The collections {Bel 1 < i < 4} and {bill < i < 4} form the fundamental 
frame and coframe fields of L4, respectively. The new space-time L4 that is 
obtained from M4 by minimal replacement has the line element 

dS2 = gij dxi @ dxJ (7) 

with 

gij = B~hr~B], g = deg(g;j) = - B  2 (8) 

while the line element for M4 is 

ds 2 = hij dx i |  dx j = ( d x 4 )  2 - (dxl) 2 - (dx2) 2 - -  ( d x 3 )  2 (9) 

in a system of units for which the speed of light is unity. 
The new space-time L 4 has both curvature and torsion. The Cartan 

torsion 2-forms {y~'ll < i < 4 }  are defined by Y / = d B i +  W~I~, ^ BL The 
holonomic torsion 2-forms S k 1 k k i j = ~(Fij - F t) dx ^ dx are then determined 
in terms of the Z i by S k = b ~ Z / .  Exp(icit calculation of the exterior 
derivatives and products gives the evaluations 

Y/= O~l~xJ + dc~i + W~l~ ^ c~ -i, 1 < i < 4  (10) 

where 

O ~ = d W ~ + ~ C p ~ v W P ^ W ~ =  O~sdxr^dx s, 1 < ~ < 6  (11) 

are the six curvature 2-forms for the Lorentz sector of the Poincar6 group. 
The corresponding components of the curvature tensor and the Ricci 
tensor of L4 have the determination 

R~,j ~ i (12) = Or~Lj~, Rij = R k i j  = OkiLj~ k 

Here, 

Lj.~=b~l~B], 1<~_<6 ,  l<_i , j<_4 (13) 

define a basis for the Lie algebra of the Lorentz group lifted to the new 
space/-4; that is, 

L f,g~j + ~ Lj~gki = 0 (14) 

Gauge theories of defects in condensed matter (Kadi6 and Edelen, 
1983; Edelen and Lagoudas, 1988) refer to the quantities such as E i as the 
dislocation density and current 2-forms, while 0" are referred to as the 
disclination density and current 2-forms. We shall take over these names 
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even though defect dynamics deals only with the gauge theory that arises 
from the local action of the group that is the semidirect product of T(3) 
with SO(3). This would seem reasonable in the light of the fact that the 
smaller gauge group used in defect dynamics is a six-parameter subgroup of 
the Poincar6 group. 

The differential equations for the determination of geodesics in the 
new space-time L 4 take a particularly simple form when resolved on the 
fundamental frame basis given by (6). We therefore set 

V i = bik vk, v i=  Bik V k (15) 

and 

~o~= VJW~ (16) 

Let x i=  ui(z) be the parametric equations for a geodesic in L4 with path 
parameter z. The four functions {ui(z)ll < i < 4} are to be determined by 
solving the system of differential equations 

f i i= V~=b~v  ~, ~ i + o ~ l ~ v S = O ,  1 < i  -<4 (17) 

If we let the first three l's be a basis for the Lie algebra of the subgroup 
S 0 ( 3 ,  R) and the remaining three l's generate Lorentz boosts in the (x, t), 
(y, t), and (z, t) planes, then the second half of the system (17) becomes 

~x  .~_ (.oll)y _~_ Oj21)z .~_ w 4 u t  = 0 (18) 

/~Y - -  (DI / )  x "~- f.O 3/) z -~- (-05/-) t ~--" 0 (19) 

~)z - -  0)21.) x - -  O)3vy .q._ (.06V, = 0 (20) 

S t + (D4U x -~ 0) 51) y -}- (D6U z -~" 0 (21) 

We note in particular that the system (18)-(21) admits the quadratic first 
integral 

v~hov J = V~gtj V j = const (22) 

A geodesic is thus timelike, null, or spacelike along its entire orbit, 
depending upon whether the constant in (22) is positive, zero, or negative, 
respectively. 

It was pointed out in Edelen (1989) that (18)-(22) show that gravita- 
tional effects arise through the quantities {O94, (D 5, (.06}. Thus, (16) shows 
that gravitational effects arise through the compensating 1-forms for the 
Lorentz boosts; namely, W 4, W s, and W 6. This conclusion can be further 
corroborated by noting that (11) and (12) tell us that all of the components 
of the curvature tensor of L 4 vanish when all of the W's vanish throughout 
L4, and hence the Einstein paradigm relating curvature and gravity cannot 
be valid without local action of the Lorentz group! 
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3. ELEMENTARY DISLOCATION SOLUTIONS 

The simplest possible situation is that in which all of the six W's 
vanish throughout L 4. If this is the case, then the relations (11) and (12) 
show that 

0 ~ = 0, R~j = 0 (23) 

and hence L4 is a curvature-free, four-dimensional space-time. Conversely, 
if all six of the curvature 2-forms 0 ~ vanish throughout L4, then there exists 
a choice of gauge for which all six of the 1-forms W ~ will vanish 
throughout L4. There are still the compensating 1-forms ~b i for the transla- 
tion subgroup, however, and hence L4 can still have torsion. In fact, under 
the stipulation W" = 0, 1 -< e <- 6, (10) shows that we have the dislocation 
density and current (Cartan torsion) 2-forms 

Is dO i (24) 

and the distortion 1-forms have the evaluation 

B i = dx i + ~i (25) 

A standard practice in the classical theory of dislocations in crystalline 
solids (Kovacs and Zsoldos, 1973; Lardner, 1974; Mura, 1982; Nabarro, 
1979, Zorawski, 1967; Seeger, 1955) is to specify the dislocation density 
2-forms and then to calculate the response of the crystalline solid. It thus 
seems useful to turn our problem around and specify the dislocation 
density and current 2-forms Z; o n  L 4. To this end, we consider the 
particularly simple situation where 

E; = A i(x, y)  dx A dy (26) 

and the functions {A i(x, y) } are piecewise smooth and bounded throughout 
L4; that is, where the dislocation density and current 2-forms are space 
supported. Space-time-supported dislocation density and current 2-forms of 
the form A;(z, t) dz A dt will be considered later. The restriction that the 
coefficient functions {A ill < i -< 4} depend only on the two variables x and 
y follows from the fact that (24) implies that we must satisfy the consis- 
tency conditions dE;= 0. An integration of the system (24) gives 

c~'= ai(x, y ) { x  dy - y dx} (27) 

where the coefficient functions {a;(x, y)ll < i < 4} have the evaluation 

;o' ai(x, y) = A i(2x, 2y)2 d2 (28) 



1320 Edelen 

If  we use polar coordinates (r, '9) in the x - y  plane and set 

.4i(r, '9) = A i(r cos ,9, r sin ,9), 

then (28) gives 

a'(x, y) = r -2  .~i(l, O)l dl (29) 

If  the dislocation densities all vanish outside of  an infinite tube of 
radius r o parallel to and including the z axis, then we have the evaluation 
(29) for r < ro, while 

;o .~ a'(x, y) = r -2  .4i(l, ,9)l dl (30) 

for r > ro. Defect dynamics refers to the region r < r 0 as the dislocation 
core, while the region r > ro  is the field region. Noting that 
x dy - y dx = r 2 dO, use of  (27) shows that an integration of  the 1-form tk i 
or B; around a circle {Ylr = rl > r0} in the field region gives 

Thus, although there is no dislocation density or current in the field region, 
the presence of a nontrivial dislocation core can be detected in exactly the 
same way that the presence of  an electric current in a conductor can be 
detected by observations of the field external to the conductor. Use of (27) 
and (30) shows that the dislocation density and current (Cartan torsion) 
2-forms Z; all vanish for r -> ro. In fact, if the a; are functions of  x and y 
that are homogeneous of  degree - 2 ,  then we will have Z ~= 0. We have 
already assumed, however, that/-,4 is curvature-free. Accordingly, the region 
r > ro is both curvature-free and torsion-free. The region r > ro o f  L 4 is 
therefore a region in which the vacuum Einstein f ield equations are satisfied! 
Solutions to the Einstein field equations that are obtained in this way will 
be referred to as space-supported elementary dislocation solutions. These 
solutions are not trivial because they are defined on the exterior, r > ro, of 
a torus of  infinite extent, and hence on a region with nontrivial topology. 
Further, the core region r < ro of  Z 4 has the nontrivial dislocation density 
and current (Cartan torsion) 2-forms {A~(x, y) dx ^ dy]l < i < 4}, which are 
the consequence of  compensation for a nontrivial action of the translation 
subgroup of  the gauge group P(10). Particularly simple examples of  
elementary dislocation solutions will be analyzed in the following two 
sections. 

The essential point to recognize here is the relative ease with which 
exact solutions of  the Einstein field equations can be obtained. In fact, the 
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procedure admits a useful generalization. Let ~(x ~) and fl(x ~) be two 
functionally independent functions defined o n  L 4 (i.e., d~ ^ d f l  ~ 0  
t h r o u g h o u t  L4 ) .  The Z ~ are taken to be simple 2-forms with the representa- 
tion 

Z~= A;(~, fl) dot ^ dfl (31) 

where the functions A ~(ct, fl) are piecewise smooth functions. This form of  
the E ~ is clearly sufficient in order to satisfy the compatibility conditions 
dE /=  0. Since Yi= dB i, an integration yields 

Bi = Bj dx  j = dxi + a~(~, fl) {~ dfl - fl d~ } (32) 

where 

~0 
1 

a'( , ,  fl) = Ai(2~, 2fl)2 d2 (33) 

In fact, (33) gives particular solutions of the partial differential equations 
~a i 3a i 

Ai(~, fl) = �9 ~ + fl ~ + 2a i (34) 

which result from the demand that 

d{a'(~z, fl){a dfl - fl da}} = Xi(a, fl) da A dfl (35) 

It is thus clear that any region of L4 where all of  the a i are homogeneous 
functions of  {ct, fl} of  degree - 2  is a region where all of  the d ~ and hence 
the Y ~ vanish. Such regions therefore have both vanishing curvature and 
vanishing torsion, and hence the line element d S 2 =  Brhr~BSdxJ |  j is a 
solution of the Einstein field equations. 

4. SPACE-SUPPORTED ELEMENTARY SPACE DISLOCATION 
SOLUTIONS 

We first consider the case where A 1 = A 2 = A 4 = 0 ,  while A 3 = A 3(r) is 
a piecewise smooth, bounded function of  the single argument r = 
( x 2 + y 2 )  1/2 that vanishes for r > r 0 > 0 .  Since only A 3 is nontrivial, the 
dislocation structure of  L 4 is spatial in nature and corresponds to what is 
referred to as a screw dislocation in the classical literature on defects in 
crystal structures. Accordingly, we have 

a I = a 2 = a 4 = 0, a 3 = f ( r )  = Kr -2 (36) 

for r > ro, where K is a constant that is given by 

K =  A 3(l)/dl 
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The fundamental frame and coframe fields thus have the evaluations 

bl = Oi + yfOz, b2 -~- Oy - -  X f O z ,  b3 ~ 0z, b 4 = ~, (37) 

B'  = dx ,  B z = dy,  n 3 = - y f d x  --[- x f d y  --}- dz, B 4 = dt  (38) 

Use of (7) shows that the line element for the region r > r 0 of L 4 is given 
by 

dS 2 = - ( 1 4-fZy 2) dx 2 4- 2 f2xy  dx  dy 4- 2fy dx  dz 

- - ( 1  - . t - f 2 x 2 ) d y 2 - 2 f x d j d 2  - d22 -t-- d/2 (39) 

This  line element is an exact solution of the Einstein field equations in 
the region r > ro because this region is both curvature-free and torsion- 
free. The solution is nontrivial, however, because of the nontrivial 
topology of the region r > r0; there are loops in this region that cannot be 
shrunk to a point while remaining in the region. Inspection of (39) shows 
that this solution is a static solution. In addition, it is asymptotically 
Minkowskian as r tends to infinity because f =  K/r  2. It is therefore 
convenient to view this L4 as embedded in 3//4 for interpretation of  the 
geometry of t 4. 

The easiest way of understanding the nature of this solution of the 
Einstein field equations is to examine the geodesics in the region r > r 0. 
Since all of the W ~ vanish, all of  the co ~ vanish and the geodesic equations 
reduce to 

~3 ~ = O, ~i = b~v j (40) 

in the region r > ro. Clearly, the first half of  this system has the solu- 
tions V i = k i, where the k's are constants. For  the purposes of  this discus- 
sion, let 

{v'} = {o, k, 0, 1} (41) 

For 0 < k < 1, the geodesic will be timelike, while for k = 1 it will be a null 
geodesic (remember that we have taken units so that c = 1). The spacelike 
geodesics that obtain for k > 1 will be ignored since they do not correspond 
to motions of  test particles in the Einstein theory. 

The evaluations of  the frame fields given by (37) and the first of the 
system of  relations (15) give the velocity vector field 

 vi, {0 k k_ _ x2 + y21}  42, 
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Likewise, (37) and the second set of the system (40) give the following 
equations for the determination of the geodesic orbits: 

dx 
- -  = O; x ( O )  = X > ro 
dr 

dz 

dr 

-~Yz = k, y(O) = 0 

- k x K { x 2 + y 2 }  -1, z(0)=0 
(43) 

dt 
- -  = 1 ,  t ( 0 )  = 0 
dr 

A direct integration of this initial value problem yields the orbital equations 

x(~)=X,  y(~)=k~, z ( x )=Karc tan (kx ) ,  t0:)=T (44) 

Accordingly, (42) and (44) yield 

{V i}= O,k, x z  +k2~ 2,1 (45) 

The simplest interpretation of these results is from the vantage point of 
the asymptotically attached Minkowski space-time. Although the vector 
field with components V i gives Veg~jV j = v~h~jv j = 1 - k 2 >  0 for this time- 
like geodesic with respect to the metric structure of L4, an observer in the 
asymptotic Minkowski space at infinity would obtain VihijV j = 1 -  k 2 -  
k2X2KZ/(X 2 + k2~2) 2. In fact, the asymptotic Minkowskian observer would 
say that the point traversing this geodesic has an effective spatial velocity 
~ that has the evaluation 

q/'2 = k2(1 X2K2 "~ + (X 2 + k2~2)2 ] (46) 

Now, X > ro is the value of the closest approach of this geodesic to the 
dislocation core, as measured by an asymptotic Minkowskian observer, 
while K is the "total amplitude" of the dislocation core, which is as yet 
unassigned. It is thus clear that we can always choose K sufficiently large 
that ~ > 1 ( ~  is greater than the speed of light) for some open interval 
around ~ = 0 (around the point of closest approach to the dislocation 
core). Thus, although an observer moving along this timelike geodesic 
would record a constant spatial velocity k < 1 (less than the light velocity) 
with respect to the metric structure of the L4 through which he is passing, 
a fixed external Minkowskian observer at very large distance from the 
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dislocation core would assign a spatial velocity greater than the light 
velocity for the moving observer in a neighborhood of nearest approach to 
the dislocation core. In fact, since K can be assigned any finite value, it is 
clear that there are L4's with spatial dislocations for which an external 
Minkowskian observer would record motion along a geodesic with spatial 
velocity that is any large, but finite multiple of  the light speed on closest 
approach (X > to) to the dislocation core. 

Another interesting aspect of the above solution of the geodesic 
equations is the resulting z motion. Observe first that the motion in the 
(x, y, t) space-time is what would be obtained for the motion of a particle 
in Minkowski space with sublight spatial velocity k < 1 and closest ap- 
proach X to the origin (z axis); namely 

x(~)  = x ,  y(~)  = k~,  t(~) = 

The presence of the dislocation core is manifest in the resulting motion 
along the z axis (i.e., parallel to the dislocation core), 

z (z)= - K  arc tan(kx)  

Thus, during a time interval [0, T], the change in the z location is given by 

Az = K arctan T 

which is asymptotic to Az = K n / 2  for large values of T. Appropriate 
choices of the field strength K thus result in any large but finite value of Az 
during the time interval [0, T]. Note also that definite motion is required in 
the (x, y) plane because there is no motion along the z axis if k = 0. 

5. SPACE-SUPPORTED ELEMENTARY TIME DISLOCATION 
SOLUTIONS 

This time we take A I = A 2 = A 3 = O  and A4=A4(r) ,  with A4(r) a 
piecewise smooth function of r that vanishes for r > ro. Since only A 4 is 
nonzero, this situation corresponds to a spatially supported time disloca- 
tion. This type of  dislocation structure has no analog in the classical 
literature of defects in crystal structures. With these values of the A t we 
necessarily have 

a I = a 2 = a 3 = 0, a 4 = f ( r )  = Kr -2 (47) 

with 

I 
ro  

K = A 3(l)l dl (48) 
dO 
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The resulting frame and coframe fields are thus given by 

bl = Ox + yfdt ,  b2 = dy - xfdt ,  b3 = az, b4 ~- t~t (49) 

Bl  = dx, B2 = dy, B3 = dz, B4 = dt - y f  dx + x f  dy (50) 

These in turn determine the metric structure of  the resulting L4 in the 
region r > ro by (39): 

dS  2 = ( - 1 +fEy2) dx 2 _ 2 f2xy  dx dy - 2fy dx  dt 

+ ( -- 1 +fZx2) dy 2 + 2fx  dy dt - dz 2 + dt 2 (51) 

This line element represents a static solution of  the Einstein field equations 
in the region r > r0 that becomes asymptotically Minkowskian for suffi- 
ciently large r. We may thus view Z 4 from the vantage point of  the 
Minkowski space-time that can be asymptotically attached as r approaches 
infinity. 

Again, we investigate the space-time Z 4 by solving the geodesic equa- 
tions. In direct analogy with the previous section, we take 
{v"} = {0, k, 0, 1}, with k 2 < 1, and hence 

(V i} = {0, k, O, 1 - k x f }  (52) 

If  we use the same initial data as before, namely {xi(O)} = {X, O, O, 0}, the 
orbital equations for this geodesic are 

x(~) = X,  y(~) = k~, z(~) = O, t(T) = ~ - K arctan -~ (53) 

Consider two observers, one riding along the geodesic and one at rest 
at a very large value of r. The observer riding along the geodesic will 
determine his speed by ViguVJ= vihovJ= 1 - k 2 >  O, and hence he is a 
proper test particle observer of  the space-time L4. The fixed observer at 
large r would use his Minkowski metric structure to assign the speed ~ by 

= Vhi]V" =_1 X Z + k Z z Z ,  ] 

Clearly, this can be positive, zero, or negative at z = 0 (at closest approach 
to the dislocation core) by appropriate choices of  the dislocation field 
strength coefficient K. 

Of  greater interest here is the "time orbit" 

t ( z ) = z - K  a r c t a n ( k l )  (54) 

In view of the first three orbital equations given by (53), it is reasonable to 
interpret z as the canonical time variable in the asymptotically attached 
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Minkowski space-time. Since t(z) was obtained by solving the geodesic 
equations, t(z) can be interpreted as the time variable for the observer 
moving along the geodesic. As such, (54) shows that we can always choose 
the dislocation field strength K so that the observer moving along the 
geodesic will have time reversal in a neighborhood of the closest approach 
of the geodesic to the dislocation core relative to the canonical time 
variable of an observer in the asymptotic Minkowski space-time at large 
distances from the dislocation core. 

6. SPACE-TIME-SUPPORTED ELEMENTARY DISLOCATION 
SOLUTIONS 

We again assume that all six of the W ~ vanish throughout L4, and 
hence we have 0 ~ = 0, R~sj = 0 throughout L4. The situations to be consid- 
ered here are those for which 

Y / =  P'(z, t) dz ^ dt (55) 

that is, where the dislocation density and current 2-forms are simple and 
space-time-supported. They give rise to distortion 1-forms that have the 
evaluations 

B i =  dxi + pi(z, t){z dt - t dt} (56) 

because the compensating 1-forms for the translation subgroup are given 
by 

(a i =pi(z ,  t){z dt - t dz} (57) 

Here, the p; are evaluated in terms of the Pi by 

;o' p~(z, t) = P~(2z, 202 d2 (58) 

Since all of the components of the curvature tensor vanish throughout L4, 
it follows from (55) that any region of L 4 where all four of the E g vanish 
is a region where the Einstein field equations are satisfied. The line element 
for such a region is given by 

dS 2 = B~hr~B~ dx~| dx j (59) 

Solutions obtained in this manner will be referred to as space-time- 
supported elementary dislocation solutions of the Einstein field equations. 

A space-time-supported elementary space dislocation solution is 
defined by 

p l  = p(z  2 + t2), p2 = p3 = p4 = 0 (60) 



Solutions of Einstein Field Equations 1327 

where P(z2+ t 2) is a piecewise smooth, bounded function of its argument 
that vanishes for z 2 + t 2 = T z > T 2. The region T -< To is the core region, 
while the region T > To is the external field region. With the evaluations 
(60), (58) gives 

pl = ~ T - 2  =p ,  p 2 = p 3 = p 4 = O  (61) 

with 

The solution of the first 
{v'} = {O, O, k, 1 } , k <  1, is 
system (66) thus gives 

fo T~ = P(I)I dl (62) 

in the external field region T > To. The corresponding frame and coframe 
fields are thus given by 

bl = Ox, b2 = Oy, b3 = ptOx + Oz, b4 = - p z d x  + Ot (63) 

B 1 = d x - p t d z + p z d t ,  B 2 = d y ,  B3=dz ,  n 4 = d t  (64) 

and the line element has the evaluation 

dS2 = - d x 2  + 2pt dx  dz - 2pz dx  dt _ @ 2  

- ( l + p2t2) dz2 + 2p2tz dz dt + (1 - p2z2) dt2 (65) 

This line element is clearly not static, but still reduces to the corre- 
sponding Minkowski line element sufficiently far away from the dislocation 
core (i.e., for T 2 = z 2 + t 2 very large). It might seem that the corresponding 
metric tensor go could become singular in view of the fact that we have 
g44 = 1 - p 2 z 2 .  This is not the case, however, for a direct calculation gives 
det(go) = - 1. 

The equations for the geodesics reduce in this case to 

d i = O, ~i = b~vj (66) 

part of this system, with the initial data 
{v~(z)} = {0,0, k, 1}. The second part of the 

dx 
= kpt  - p z ,  x(O) = 0 

dy O, y(O) 0 
dz 

dz 
- -  = k ,  z (  O ) = Z > To 
dz 

dt 
dzz = 1, t ( 0 )  = 0 

(67) 
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where the restriction Z > To is required in order to ensure that the geodesic 
does not penetrate the core region T < To. Use of (61) and direct integra- 
tion gives 

x (z )=  - ~  a r c t a n ( z @ k ~ )  (68) 

y(r) = O, z(z) = Z + kz, t(r) = z (69) 

A combination of (67) and (69) thus gives 

dx(z) - ~ Z  
dz = z 2 + (Z  + kz)2 (70) 

and hence the maximal x-velocity component is V~ax = - ~ / Z .  Since the 
dislocation strength ~ is still at our disposal, it is clear that we can choose 

so that V~a x can exceed any finite multiple of the speed of light ( =  1). 
Interpretations similar to those made in previous sections can also be made 
here since (69) represents a linear motion in the (y, z) plane in the 
asymptotic Minkowski space-time. 

A space-time-supported time dislocation solution is obtained by 
choosing 

pl  = p 2  = p3 = O, p4 = p(z 2 +/2)  dz a dt (71) 

where P ( z 2 + t  2) is a piecewise smooth function that vanishes for 
T 2 = z 2 + t 2 > Tg. As before, we set p = r -2, where ~ is given by (62). 
The only nonzero ~b-field is therefore ( a 4 = p { z d t - t d 2 } .  An exactly 
similar analysis gives the frame and coframe field evaluations 

pt Ot (72) 
bl = Ox, b 2 = 0y, b 3 = t3 z -t- ~ ~3t, bt - 1 + pz 

B l = d x ,  B 2 = d y ,  B3=dz ,  B 4 = - p t d z + ( l + p z ) d t  (73) 

The line element in the exterior region T > To is thus given by 

dS2 = - d x 2  - dy2 + (p2t 2 -  1) dz2 - 2pt(1 + pz) dz dt +(1  + pz)2 dt 2 (74) 

Again, since det(go) = - (  1 + pz)2 < 0, this line element is regular through- 
out the region z2+  t2>  T 2. It is also not static, but reduces to the 
Minkowski line element at very large values of T 2 = z 2 + t 2. An analysis of 
the geodesics produces results similar to those obtained in Section 5. 

7. ELEMENTARY DISCLINATION SOLUTIONS 

We now turn to the somewhat more involved situations in which all 
four of the dislocation compensating 1-forms ~b i vanish throughout L4. 
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Under these conditions, the relevant geometric quantities have the evalua- 
tions 

1 W ~ (75)  Zi = vt~li..,~- 0 ~ = d W  ~ + ~ C ~  W e A 

The resulting space-time L 4 is said to have a space-supported elementary 
disclination if only one of the six W ~ is nonzero, and the corresponding 
nonzero curvature, say 0 q, has the form 

0 q = O(x, y) dx ^ dy (76) 

where O(x, y) is a piecewise smooth, bounded function. Since (75) now 
gives 0 q = d W  q, an integration yields 

W q = w(x, y ) {x  dy - y dx} (77) 

with 

~o 1 w(x, y) = O(2x, 2y)2 d2 (78) 

Accordingly, the Cartan torsion 2-forms have the evaluations 

Z i =  O(x, y) dx ^ dy l~qx j (79) 

We now make the critical assumption that O(x , y )  vanishes for 
r 2 = x 2 _+_ y2 > rg. The region r < ro of L4 may be identified with the core of 
the disclination, while the exterior region r > r 0 is the field region. For 
simplicity, we take | y) = O(x2+ y2), so that 

W = "~//'r - 2  

for r > r0. Now, simply observe that the exterior region r > ro has both 
vanishing curvature and vanishing torsion, and hence the line element for 
this exterior region is a solution of the Einstein field equations, a space-sup- 
ported elementary Lorentz disclination solution. In particular, we have 

B' = dx'  + w{x  dy - y d x } l ; S  (80) 

and 

dS 2 = B~hr, B] dx*| dx j 

All that remains is to select which of the six possible values for q is to 
be used for further study. The previously chosen basis matrices for the 
Lorentz group show that q = { 1, 2, or 3} would correspond to local action 
of the subgroup S0(3 ,  R), while q = {4, 5, or 6} correspond to Lorentz 
boosts in the (x, t), (y, t), and (z, t) planes, and this latter set of three 
alternatives is known to be associated with gravitational phenomena. Let 
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us therefore take q = 6. The evaluations (80) now give 

B ~ = d x ,  B 2 = d y ,  B 3 = d z  + t w { x d y - y d x }  (81) 

B4 = dt + zw { x dy - y dx  } 

The corresponding frame fields are 

bl = Ox + twy~z + zwy~, ,  b2 = Oy - twx~3 z - zwxO, (82) 

b3 = 8z, b4 = t~t 

and the line element for the resulting solution of the Einstein field equa- 
tions is given by 

dS  2 = - ( 1  + t2w2y ~ - z2w2y 2) dx  ~ + 2xyw2( t  2 - z ~) dx  dy 

+ 2twy  dx  dz - 2zwy  dx  dt - ( 1 + t2w2x 2 - z2w2x  2) dy 2 

- 2 t w x  dy dz + 2 z w x  dy dt - dz 2 + d t  2 (83) 

This line element is not static, but it is nonsingular throughout L4 because 
(83) gives det(gej ) = - 1 .  It is also asymptotically Minkowskian for large 
r 2 = x 2 + y  2 because w = ~/'r -2. As before, we can use this asymptotic 
Minkowskian space-time as a "container," so to speak, for the analysis and 
understanding of the solution represented by (83). 

In order to obtain the governing differential equations for geodesics in 
this L4, we first have to compute co 6 ,,Jh e w6 = ~ vj ,, j .  Use of the above evalua- 
tions gives 

co 6 = w { x v  y - yv  x} (84) 

The geodesic equations now split into two parts. The first part deals with 
motion in the (x, y) plane. It has the form 

~x = 0, vx(O) = o,  ~y = o,  vy(O) = k (85)  

with k 2 <  1, and 

A = v x, x(O) = X > ro, f~ = V y ,  y(0) = 0 (86) 

These equations have the solution 

vX(z) = O, vY(z) = k, x (z)  = X,  y(z)  = k z  (87) 

Accordingly, the motion in the (x, y) plane is rectilinear mot ion parallel to 
the y axis that has the minimal separation X - ro > 0 from the disclination 
core, where this separation is measured in the asymptotic Minkowskian 
space-time. Thus, although there are gravitational forces present because 
(.D6~ 0, these forces are axially polarized, so that there is no gravitational 
influence in the (x, y) plane. The space-supported Lorentz disclination 
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solution represented by (83) is thus of a fundamentally different nature 
than previously published solutions of the Einstein field equations. 

The simplicity of the first half of the geodesic equations is deceptive, 
for the remaining equations for the motion in the (z, t) plane are more 
complicated. When the results given by (86) and (87) are used, the second 
half of the geodesic equations take the form 

with 

~z + ff, X k v '  = O, v~(O) = O, (88) 

~5' + ff, Xlcv ~ = O, vt(O) = 1 (89) 

= - ~ X k t  + v ~, z(O) = 0 (90) 

[ = - f f J X k z  + v', t(O) = 0 (91) 

X2 + k2z2 (92) 

Although the system (88), (89) can be solved first, and the results then put 
into the remaining equations (90), (91), the T dependence of ff that is given 
by (92) makes these equations difficult to solve in closed form. However, if 
we introduce a new independent variable by the transformation 

1 [kr~  
u(r) = ~ arctan~-~) (93) 

the system (88), (89) can be solved to give 

v Z = s i n h [ C t / ' k X u ( z ) ] =  sinhlqCr arctan(kx) 1 (94) 

v t=cosh[ 'CCPkXu(z ) ]=  coshE~#r arctan(kx) 1 (95) 

These relations show that the Lorentz disclination field strength ~ deter- 
mines the ranges of vZ(z) and vt(z)  during the geodesic motion. An apparent 
speed ~ along the z-axis can be defined by V = v~/v t. Use of (94), (95) 
gives 

I ~ = tanh ~" arctan -~ (96) 

and hence the motion is always sublight (i.e., ~ z <  1), as is known to be 
the case with geodesic motion in a gravitational field. The "particle" 
moving along the geodesic thus decelerates along the z axis for negative z, 
comes to rest at z = 0, and then accelerates along the z axis for positive ~, 
all the while undergoing rectilinear motion in the (x, y) plane. The reader 
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should carefully note that some motion in the (x, y) plane is required in 
view of  the degeneracy that results in (94), (95) when k = 0. 

When the solutions (94), (95) are substituted into (90), (91), a system 
of first-order differential equations with variable coefficients is obtained for 
the determination of z(z) and t(z). This system is sufficiently complicated 
that it would appear to require numerical integration even after the new 
independent variable u(z) is introduced. 

A significant simplification was achieved by the choice q = 6 because 
happenings in the (x, y) plane and the (z, t) plane decouple to a useful 
extent. If  we were to choose q = 4, then 

B ' =  dxi  + w { x  dy - y dx}lij4x j 

and hence we have 

B l = ( 1  - t w y ) d x + t w x d y ,  B 2 = d y ,  B 3 = d z  (97) 

B 4 = d t  - x w y  dx + X2W dy 

The corresponding line element is 

dS 2 = (w2x2y 2 - (1 - twy) 2) dx 2 + 2( twx(  - 1 + wty) - w2x3y} dx dy 

- 2wxy  dx dt - {1 + t2w2x 2 - w2x 4} dy 2 

+ 2wx  2 dy dt - dz 2 -I- dt 2 (98) 

This line element is not static and is not necessarily regular because 

det(go) = - ( 1 - wty) 2 (99) 

and w = ~Cr -2. The equations for the geodesics for this line element are 
considerably more complicated than those for (83) and will not be reported 
here. 

The solutions become even more complicated when the nonzero 
curvature 2-form is space-time-supported: 

0 q = P(x  2 + t 2) dx ^ dt (100) 

It is assumed that P is a piecewise smooth function of  its arguments that 
vanishes for x 2 + t 2 = T 2 > T g. The corresponding W-field is given by 

W q = p ( x ,  t ) {x  dt - t dx}  (101) 

with 

p = X2 + t2 (102) 
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With q = 6, the coframe fields are given by 

B 1 = d x ,  B 2 = d y ,  B 3= - t 2 p d x W t p x d y W d z  

B 4 = xpt  dx + ( 1 + xEp) dt (103) 

The corresponding line element is 

dS  2 = (1 + p2t4 -- p2tEx2) dx 2 + 2p2t3x dx dy + 2pt 2 dx dT. 

+ 2ptx(1 + p x  2) dx dt - (1 - p 2 t 2 x 2 )  dy 2 

- 2ptx dy dz - dz 2 + (1 +px2) 2 dt 2 (104) 

Again, this line element is not static. It is, however, regular throughout the 
region x 2 + t 2 > To 2 because 

det(go) = - ( 1 + px2) 2 (105) 

and p = ~ / ( x  2 + t2). Further, the core region for this solution is the locus 
of  points in L4 for which x 2 + t 2 -< To 2, and hence there is no core region 
for t in the intervals ( - 0 %  To) and (To, o0). The line element (104) thus 
describes the external field of a violent event that occurs during the time 
interval [ - T o ,  To] in the entire (x, y) plane. 

In order to complete this picture, we give an example of a disclination 
solution generated by the compensating field for the local action of an 
element of S 0 ( 3 ,  R). Here we take 

W '  = f { x  dy - y dx}  (106) 

in the region r 2 = x 2 + y 2  > r 2 with 

f = Kr -2 (107) 

The resulting coframe fields are 

B ~ = (1 _ f y 2 )  dx  + f x y  dy, 

B 3 =dz ,  

B 2 = f x y  dx + ( 1 - f x  2) dy 

B 4 = d t  (108) 

These coframe fields yield the line element 

dS  2 = _ { f 2 x 2 y 2  + ( f y2  _ 1)2} dx 2 + 2 f x y ( f x 2  + f y2  _ 2) dx dy 

-- {f2x2y2 + ( f x  2 -- 1) 2} dy 2 -- dz 2 + dt 2 (109) 

This is obviously a static line element that is regular in the region r > ro for 
K r 1 because det(&.j) -- - ( f x  2 + f y 2  _ 1)2 = - ( K  - 1) 2. It is also asymp- 
totically Minkowskian for sufficiently large r. The geodesic equations are, 
unfortunately, very complicated and lead to little further understanding. 
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8. DISCUSSION 

A combination of direct gauge theory for the Poincar6 group with 
ideas from the classical theory of defects in crystalline materials has led to 
a method for obtaining collections of new solutions to the Einstein field 
equations. These solutions have either dislocation or disclination core 
regions where things happen so that in the regions exterior to the cores 
there are frame and coframe fields that lead to line elements that satisfy the 
Einstein field equations. In addition, these line elements are asymptotically 
Minkowskian sufficiently far away from the core regions. We do not make 
specific statements about what physically happens in the core regions other 
than to note that such regions always carry nontrivial torsion fields and 
may or may not carry nontrivial curvature fields. This situation is a direct 
analog of current practices in the classical theory of defects, where disloca- 
tion and disclination cores are posited and the external fields that are 
created by the presence of the cores are analyzed. Examples have been 
given where geodesic motion in such fields results in hyperlight velocities 
and time reversals relative to observers in the Minkowski space-time at 
infinity. It is therefore of particular importance that investigations of the 
properties and possible methods of generation of such core regions be 
pursued. 
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